
Stochastic, Non-convex and Composite Optimization
from the Machine Learning’s Perspective

Qinghua Ding
Computer Science Department

Tsinghua University

Abstract

Recently I’ve been reading quite a lot papers and books in
convex optimization (including operator theory) and non-
convex optimization. However, I found it hard to keep track
of different methods. Each method seem to have its own con-
straints and results. Here I will sort ALL IMPORTANT meth-
ods out, either in convex optimization and non-convex opti-
mization. These methods are critical to our understanding of
optimization methodology and will be helpful for designing
better algorithms.

Stochastic & Online Convex Optimization
1. Stochastic Gradient Descent
Big data created the problem for computation. Consider the
problem of minimizing a function which has the sum-of-
functions structure, that is,

min f(x) =
1

n

n∑
i=1

fi(x).

It’s hard to compute an overall gradient f ′(x), which
would require computing the gradient for n directions and
summing them up, especially when n is large and even in-
finite. Thus we make a compromise, i.e., we construct an
unbiased estimator of the overall derivative to save the com-
putational power.

f̃ ′(x) = f ′i(x)

Here i is chosen uniform randomly from i = 1...n. And
we have the following unbiasedness and bounded variance
assumption.

E(f̃ ′(x)) =
1

n

n∑
i=1

fi(x) = f ′(x)

var(f̃ ′(x)) =
1

n
fi(x)2 − 1

n2
(

n∑
i=1

fi(x))2 = σ2 < +∞

Usually, we assume σ = o(1). Then the stochastic gradi-
ent descent works as follows.

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

• sample i from 1...m,
• gradient descent xk+1 = xk − hkf ′i(xk).

In face of non-convex functions, the stochastic gradient
descent will take O(ε−4) iterations to get to a ε-stationary
point. And the step size performs optimal when hk = 1√

k+1
.

It’s easy to see from the fact that

f(xk+1) ≤ f(xk)− 〈f(xk)|xk+1 − xk〉+
L

2
‖ xk+1 − xk ‖2

≤f(xk)− hk〈f(xk)|f̃ ′(xk)〉+
h2kL

2
‖ xk+1 − xk ‖2

(1)
Taking the expectation and then we have

min
k
E ‖ f ′(xk) ‖2≤ 2(f(x0)− f∗) + (

∑
h2k)σ2L

2(
∑
hk)− (

∑
h2k)L

Assume
∑
hk → +∞,

∑
h2k = Õ(1), σ = o(1), then

we have that this sequence always converges and at a rate of
n−

1
2 . And this leads to the complexity result.

Moreover, if the function is (strongly) convex, the com-
plexity isO(ε−2) (orO(ε−1)). An interesting observation is
that, when we take hk = 1

L as in classical gradient descent,
we will have

min
k
E ‖ f ′(xk) ‖2≤ O(n−

1
2) + σ2.

And the process will never converge, even if σ = o(1).
Thus we can perceive what stochastic optimization is suffer-
ing from essentially - the power of the variance, which could
make the algorithm performs worse an order of magnitude.

2. Momentum SGD
The momentum SGD in fact makes use of the momentum
method in stochastic gradient descent. Consider the follow-
ing update rule.

gk+1 =f̃ ′(xk)

mk+1 =γkmk + gk+1

∆xk+1 =xk − hkmk+1

(2)

The momentum method incoperates the historic informa-
tion into the gradient, thus enhance the directions which

it has been moving along, while weakening the directions
which it has been oscillating along. This method hence
makes the SGD perform more robustly and reduce the vari-
ance of gradient estimation.

Another form of acceleration (with little changes) is the
Nesterov’s accelerated gradient as follows.

gk+1 =f̃ ′(xk − γkhkmk)

mk+1 =γkmk + gk+1

∆xk+1 =xk − hkmk+1

(3)

The performance of this family of method is proved to im-
prove the convergence rate of the SGD only when the func-
tion is convex or strongly convex. And this analysis do not
extend to non-convex cases.

3. Adaptive Subgradient Descent (AdaGrad)
The AdaGrad tries to solve the per-dimension learning rate
problem, since a global learning rate is too coarse to capture
the difference between dimensions. We give the AdaGrad
algorithm as below.

gk+1 =f̃ ′(xk)

nk+1 =nk + gk+1 � gk+1

∆xk+1 =xk − hkgk+1 �−1 (
√
nk+1 + ε)

(4)

Note that � is per-dimension multiply and �−1 is per-
dimension division. In this way, the AdaGrad tracks the per-
dimension information, and temper the learning rate of the
dimensions that has already changed a lot, while enhance the
others that only have changed mildly.

Although it showed to achieve O(
√
T) regret bound for

online convex optimization, no assertion has been made to
the general non-convex settings.

4. RMSProp
Anyway, AdaGrad still suffers from lower learning rate as
the learning process goes on. Indeed, the per-dimension ac-
cumulative quadratic norm will become quite large in the
end, hindering any further improvements the gradient de-
scent hopes to make. Thus a decaying accumulative term is
used in RMSProp to solve this problem.

gk+1 =f̃ ′(xk)

nk+1 =γnk + (1− γ)gk+1 � gk+1

∆xk+1 =xk − hkgk+1 �−1 (
√
nk+1 + ε)

(5)

The RMSProp thus makes the learning procedure less hin-
dered, and preserve some agility of the model throughout the
process.

5. Adaptive Moment Estimation (Adam)
To take the advantage of both the momentum-based meth-
ods and the L2-norm based methods, Adam progresses the
learning procedure as follows.

gk+1 =f̃ ′(xk)

mk+1 =µmk + (1− µ)gk+1

m̄k+1 =
mk+1

1− µt+1

nk+1 =γnk + (1− γ)gk+1 � gk+1

n̄k+1 =
nk+1

1− γt+1

∆xk+1 =xk − hkm̄k+1 �−1 (
√
n̄k+1 + ε)

(6)

A very interesting thing to notice is the bias-correction
step, m̄k+1 = mk+1

1−µt , which seems not so straight forward.
In fact, we have the following for the decaying estimation,

E(mk+1) =µE(mk) + (1− µ)E(gk)

=(1− µ)

k∑
i=0

µiE(gi)

=(1− µk+1)E(g)

(7)

Note that we are somewhat not serious and take E(gi) =
E(g),∀i = 1...k for analyzing our intuition. However, the
bias correction step is then clear itself. The O(

√
T) regret

bound is proved. Anyway, we still know nothing about the
convergence rate.

In fact, we can never expect get an convergence rate
bound better than SGD from these online optimization meth-
ods, which are essentially designed for online convex regret
minimization, and do not expect the regret to be non-convex
nor the optimization function to be the same over iterations.

6. Stochastic Variance Reduced Gradient Descent
(SVRG)
In stochastic gradient descent, we have seen that the conver-
gence rate is greatly influenced by the variance of the gradi-
ent oracle f̃ ′(x). However, we still seek for better methods
to reduce the variance of this oracle. One very useful method
widely used in statistics is the variance reduction method.

One straight forward way would be averaging a set of
sample gradients, which directly reduces the gradient vari-
ance.

g̃(x) =
1

b
f̃ ′(x)

It’s clear that the variance of f̃(x) is reduced by b2, and
this method could effectively reduce the variance. But calcu-
lations proved that this simple sampling method is not sat-
isfying enough. Since it also causes the calculation multiply
by b.

Now we consider another way by constructing a better
designed gradient estimator. Consider we take one step to
calculate the full gradient information. Then we do not need
to calculate the full gradient information any more for the
next few iterations.

To clarify our idea, we compute µ = 1
n

∑n
i=1∇f ′i(x0)

at first, and then we update m times using variance reduced
gradient estimator, i.e., we choose it ∈ {1, ..., n} for t =
1, ...,m, and update x0 as follows.

gt =f ′it(xt)− f
′
it(x0) + µ

xt+1 =xt − htgt
(8)

And intuitively, we have the integrated the previous full
gradient to the gradient estimator at current. This utilize the
fact that, in the neighborhood of some point, the gradient
won’t change too much. And when we have no information
about some derivative, we may just use the previous gradi-
ents to substitute the unknown gradients and descent along
these gradients. An intuitive substitute would be

gt =
1

n
f ′it(xt) +

1

n

∑
j 6=it

f ′j(x0)

=
1

n
(f ′it(xt)− f

′
it(x0)) + µ

(9)

However, this estimator could be extremely unbiased,
since the renewed direction has only 1

n weight. We then
magnify this weight in order to make an unbiased gradient
estimator. This gives the variance reduced gradient estimator
above.

To understand why the variance of the gradient estima-
tor is reduced, we change the representation of the gradient
estimator at some point as follows.

gt =(f ′it(xt)− f
′
it(x

∗))

− (fit(x0)− fit(x∗))
+ (f ′(x0)− f ′(x∗))

(10)

Note that we used the fact that f ′(x∗) = 0. Using ‖ a +
b ‖2≤ 2 ‖ a ‖2 +2 ‖ b ‖2 and E((X − E(X))2) =
E(X2)−E(X)2 ≤ E(X2) to bound ‖ gt ‖2, we have

‖ gt ‖2≤2E ‖ f ′it(xt)− f
′
it(x

∗) ‖2

+ 2E ‖ f ′it(x0)− f ′it(x
∗) ‖2

≤4L(f(x0)− f(x∗) + f(x0)− f(x∗))

(11)

Via further analysis, we can obtain linear convergence rate
for strongly convex function.

Non-convex Optimization
In fact, the society of non-convex optimization has been
quite mild during the past few decades. However, since
2014, the machine learning society begin to concentrate on
the non-convex optimization, since most problems in ma-
chine learning research are non-convex. And simple, ro-
bust and fast non-convex optimization techniques are really
needed.

To illustrate some of the modern approaches of non-
convex optimization in the viewpoint of the computer sci-
ence society, we specially reserved for it this section. And
we will discuss some recently proposed methods that solve
real problems in practice.

Warmup
Exponential saddle points In this section, we illustrate
the arguement of Razvan Pascanu, et. al., about the expo-
nential number of saddle points that could impede the opti-
mization progress. We first consider the information hidden
in the Hessian of a stationary point.
• If λn(f ′′(x0)) > 0, then it’s a local minimum,
• If λ1(f ′′(x0) < 0, then it’s a local maximum,
• Otherwise if |f ′′(x0)| 6= 0, i.e., then it’s a min-max saddle

point,
• Finally if the Hessian is degenerate, it’s a saddle point or

a monkey saddle.
The arguement is based on the conclusion that for generic

function chosen from a random Gaussian ensemble of func-
tions, local minima with high error are exponentially rare
in the dimensionality of the problem, while saddle points
with many negative and approximate plateau directions are
exponentially likely at high error. Thus the proliferation of
saddle points could be a predominant obstruction to rapid
non-convex optimizations.

Local minima can’t be too bad Under certain assump-
tions, it can be proved via spin-glass models, random matrix
theory, etc., that for large-size decoupled networks the low-
est critical values of the random loss function form a layered
structure and they are located in a well-defined band lower-
bounded by the global minimum. The number of local min-
ima outside that band diminishes exponentially with the size
of the network.

It is also empirically verified that the mathematical model
exhibits similar behavior as the computer simulations. And
most critical points found there are local minima of high
quality measured by the test error. Thus, the main concern
for the optimization over a large-size neural network should
be finding the local minima, instead of finding the global
minima.

Limitation of traditional methods Based on the argue-
ments above, we are concerned about algorithms that con-
verges to local minima, rather than saddle points. This target
aligns well with the first-order and second-order conditions
in nonlinear optimization.
• first-order condition: ‖ f ′(x0) ‖≤ ε,
• second-order condition: −λn(f ′(x0)) ≤ δ.

Moreover, gradient descent, Newton method and trusted
region methods are used widely in nonlinear optimization,
and we rarely care about wether they get stuck in saddle
points. In face of exponential saddle points, we are more
concerned about that how these classical methods perform
with the abundance of saddle points.

The answer available is pessimistic - to avoid divergence,
the step size of the gradient descent won’t exceed 1

|λ1| . And
if there is a large discrepancy between the eigenvalues, the
gradient descent will have to take very small steps in some
directions. This indicates that gradient descent could take
quite long time to move away from the saddle points, and it
also could take quite long time to get to the local minima.

And it’s even worse for the Newton method. The Hessian-
gradient product could change the sign gradient along some
eigenvector that indicates the negative curvature. This will
make the saddle point an attractor for the Newton method,
and Newton method will move towards a saddle point rather
than escaping from it.

Finally, trusted region methods use damped Hessian to re-
move negative curvatures. And a damping coefficient multi-
plied by identity matrix is added to the Hessian, thus making
the most negative eigenvalue positive, i.e., λn +α > 0. And
this cause the step size in other directions fold by λi

λi+α
. This

will also make the steps too small, and hence impedes the
convergence.

To this end, we make it clear the needs for new non-
convex optimization algorithms that move away from saddle
points and make progresses fast enough.

I.1 Generalized Trust Region [convergence proof?]
The first tryout in the computer science literature to han-
dle this problem is the design of generalized trusted region
methods, and we’ll discuss the ideas below.

In order to make the Newton method more robust, we con-
sider how to preserve the signs of the gradient while mak-
ing steps that is secure. A somewhat innovative method is to
move the second-order term in the target to the constraints.
We consider the generalized trust region method as follows.

s = arg min
s
mk{f, xk, s}

s. t. d(xk, xk + s) ≤ ∆
(12)

Notice that we make the approximationmk(x) first-order,
thus the gradient is guaranteed, and we then make the con-
straint second-order, which measures the accuracy of ap-
proximation.

1

2
|sTHs| ≤ ∆

This is better than gradient descent in the sense that it take
steps adaptively. And the emperical results show that this
method is superior to gradient descent and Newton meth-
ods. However, no convergence guarantee or convergence
rate analysis has been made to this method.

I.2 Noisy Gradient Descent
The generalized trust region method does not have good an-
alytical property, and hence we turn to find algorithms that
have robust theoretical guarantee for non-convex optimiza-
tion. In fact, it could be hard to handle the degenerate case,
and we first consider how we can overcome the problem of
strict saddles.

Definition 1. (strict saddle) A twice differentiable func-
tion f satisfies strict saddle property if all its local minima
have f ′′(x) > 0, and all its other stationary points satisfy
λn(f ′′(x)) < 0.

And it’s been verified that many other problems, e.g.,
SVD, fourth-order tensor decomposition, etc., all have this
property. And we make use of a robust version of this strict
saddle property.

Definition 2. A twice differentiable f(x) is (α, γ, ε, δ)-
strict saddle, if for any point x at least one of the following
is true

• ‖ f ′(x) ‖≥ ε,
• λn(f ′′(x)) ≤ −γ,

• there is a local minimum x∗ thus ‖ x−x∗ ‖≤ δ, and f(x)
restricted to 2δ neighborhood of w∗ is α-strongly convex.

Essentially, this condition says for any point whose gradi-
ent is small, it is wither close to a robust local minimum, or
is a saddle point with a significant negative eigenvalue. Now
we consider the technical issues. In fact, for case 1, the gra-
dient descent is sufficient for decreasing till this condition
is broken. For case 3, we can easily verify the local conver-
gence rate of gradient descent. The most tricky thing is the
second case, where we’ve encountered some saddle point.

Since there exists negative curvature, we still hope that we
can find this curvature and use this direction, but how? One
seemingly brute solution is to add noise to the translation at
each iteration. Due to the random noise, there will be cases
where the point jumps out of the saddle region, and flee away
via the negative curvature.

xk+1 = xk + hkf
′(xk) + ξ

Here ξ is a random guassian noise on unit sphere. The as-
sumption of this method is quite strong, i.e., f(x) is bounded
by |f(x)| ≤ B, and is β-smooth and has ρ-Lipschitz Hes-
sian. Moreover, it has to satisfy strict saddle property in
Def2. We then have the following theorem about its con-
vergence.

Theorem 1. ∀ζ > 0, η ≤ O(1
log(η−1)), with prob.

1 − ζ, noisy gradient descent ouputs a point that is
Õ(

√
η log(η−1ζ−1)) close to some local minimum in t =

Õ(η−2 log(ζ−1)) iterations.

I.3 Third Order Optimization
In fact, this algorithm follows the idea of cubic regulariza-
tion to search for higher order optimality. The novelty of this
work lies in its generalization of this group of methods. In
fact, we have the following extension of the notion of p-th
order optima.

Definition 3. (higher order optima) A point is a p-th order
local minimum if for any nearby point y, f(x)−f(y) ≤ o(‖
x− y ‖p).

Note that in order to attain higher order optima, we have
to bound higher order continuity as well.

‖ f (3)(x)− f (3)(y) ‖F≤ R ‖ x− y ‖

Also we have to guarantee second order Lipschitz conti-
nuity, i.e., ‖ f ′′(x) − f ′′(y) ‖≤ L ‖ x − y ‖. And we have
the third-order necessary condition as follows.

• f ′(x) = 0, f ′′(x) > 0,

• for any u satisfying uT f ′′(x)u = 0, we have [f (3)(x)]
(u, u, u) = 0.

The convergence rate on first order and second order is
O(ε−

3
2) and O(ε−3), which matches the cubic regulariza-

tion, with a special term indicating the third order condition.
The rest of the work is just old stories in optimization the-
ory. Another result that’s worth noticing is that fourth order
or higher order optima is NP hard to obtain.

I.4 Gradient Descent
We still list gradient descent here mainly for illustrating how
it performs in fact of saddle points.

Theorem 2. Gradient Descent converges to local minima
for strict saddle functions, but it could take exponential time.

The analysis of convergence is based on the Stable Man-
ifold Theorem in dynamic system. And the complexity re-
sult is derived by designing a octopus-like function which
have a great many saddle points hindering the progress of
the gradient descent optimizer, leading to exponential time
for overcoming the obstacles.

I.5 AGD-guilty
The accelerated gradient descent has been used in convex
optimization and it improves the convergence rate of gra-
dient descent by an order of magnitude. However, it is not
clear how we can use this method in the non-convex setting.
In fact, the momentum is originally designed for the convex
case, inspired by a heavy ball falling down a hill. However,
we are not sure wether this trick can be extended to the non-
convex case.

Anyway, the AGD-guilty has a very simple idea - we will
keep using AGD, until the convexity assumption is broken.
But if it’s broken, we can still make use of the non-convexity
found to move along the negative curvature. We illustrate the
two cases.

• there is no guilt made, then we can utilize the strong
convexity arguement to prove better convergence than
stochastic gradient descent,

• some guilt is made, then we make use of this guilt to im-
prove along the negative curvature.

The idea is simple, however, developing theoretical anal-
ysis can be quite complex. We skip the lengthy analysis and
give the main result. AGD-guilty finds an approximate sta-
tionary point only using gradient oracle, but still require first
and second order continuity, in O(ε−

7
4) iterations.

Still adding more ...

