
Summary of the Classical Methods for Convex
and Non-convex Optimization

Qinghua Ding
Computer Science Department

Tsinghua University

Abstract

Recently I’ve been reading quite a lot papers and books in
convex optimization (including operator theory) and non-
convex optimization. However, I found it hard to keep track
of different methods. Each method seem to have its own con-
straints and results. Here I will sort ALL IMPORTANT meth-
ods out, either in convex optimization and non-convex opti-
mization. These methods are critical to our understanding of
optimization methodology and will be helpful for designing
better algorithms.

Non-convex Optimization
An area of optimization that is receiving more and more at-
tention is the non-convex optimization, although it is sup-
posed to be already studied a few decades ago and found
hard enough (generally NP-hard). Albeit minimizing to-
wards the global optima is hard, new research directions ap-
pear as to minimize the first order derivative, or find a local
minima.

Specially, we distinguish two kinds of non-convex opti-
mization methods. The first only uses and constrains on first
order information, and we’d call it the first-order optimiza-
tion; while the second, is based on first-order and second-
order oracle, targeting at arriving at a local minima, and it’s
also known in classical optimization theory as nonlinear op-
timization.

Usually, we consider the following properties of non-
convex optimization methods. First comes the convergence,
i.e., whether it leads to a stationary point or a local minima.
The second is the global convergence rate, i.e., how fast it
converges to a global minima. Thirdly, its local convergence
rate is also important, especially for some nonlinear opti-
mization methods.

In the following parts, we will introduce some classical
methods in either first-order optimization or nonlinear opti-
mization. And we’ll give their theoretical performance, with
proofs, to make this survey self-contained. Before entering
into this problem, we introduce some important preliminary
information about non-convex optimization.

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Preliminary
Before we handle anything in non-convex optimization, we
should always keep in mind the following theorem.

Theorem 0. (hardness result) Given 0-1-2 order oracle,
finding a global minimizer of some function is generally NP-
hard.

In the case where we are only given 0-order oracle, we
have the following restrictive theorem, which partially veri-
fied Thm0 (proof at [LecConv P7]).

Theorem 1. (complexity for general 0-order) Given any
function that is L-Lipschitz and we want to find a ε-optimal
minimizer with only zero order oracle, then the analytical
complexity is

A =

([
L

2ε

]
+ 2

)n
.

It’s quite noteworthy that this complexity is exponential in
dimension n, which is well known as the curse of dimension.
Therefore, we cannot expect, in any sense, to find an exact
minimizer for a general optimization problem. However, we
may still find the approximate minimizer, i.e., (first-order)
the point whose gradient is no more than some threshold ε;
(second-order) or in nonlinear optimization, the point whose
gradient is no more than some threshold ε and Hessian is
almost positive definite.

Since we cannot do any better if we make no more as-
sumption over the function class to be optimized. Thus we
consider the continuous function class defined as below.
Note that the continuity is almost the most basic property
of a well-defined function.

Definition 1. (Lipschitz continuity) Let Q be a subset of
Rn, then the function f : Q→ R ∈ Ck,pL satisfies:

1. f(·) is k times continuous differentiable;
2. ∀x, y ∈ Q, we have ‖fp(x)− fp(y)‖ ≤ L‖x− y‖.

And we have the following descent lemma, which is crit-
ical to convergence analysis.

Lemma 1. (descent lemma) Suppose f : Q→ Rn ∈ C1,1
L .

Then we have for (∀x ∈ Q) (∀y ∈ Q),

f(y) ≤ f(x) + 〈f ′(x)|y − x〉+
L

2
‖ y − x ‖2 .

Proof. Consider the following calculus.

f(y)−f(x) =

∫ y

u=x

f ′(u)du

=

∫ 1

τ=0

f ′(x+ τ(y − x))(y − x)dτ

=〈f ′(x)|y − x〉+

∫ 1

τ=0

(f ′(x+ τ(y − x))

− f ′(x))(y − x)dτ

≤〈f ′(x)|y − x〉+

∫ 1

τ=0

‖ (f ′(x+ τ(y − x))

− f ′(x))(y − x) ‖ dτ

= 〈f ′(x)|y − x〉+

∫ 1

τ=0

‖ τL ‖ y − x ‖2 dτ

= 〈f ′(x)|y − x〉+
L

2
‖ y − x ‖2

(1)

For higher order approximation, we also have (∀x ∈ Q)
(∀y ∈ Q),

f(y) ≤ f(x) + 〈f ′(x)|y − x〉

+
1

2
〈f ′′(x)(y − x)|(y − x)〉+

M

6
‖ y − x ‖2 .

(2)

Two basic idea in classical non-convex optimization is
approximation and relaxation. The relaxation is straightfor-
ward, that is, to construct a series of array thus it is decreas-
ing and is an upper bound for the minimum of f(x) over
Q.

And the approximation says that we approximate the
black-box function by some lower-order functions thus we
can make use of the information we derived from the oracle,
and thus we can update our model.

In the following subsections, we consider three classes of
algorithms. The first class only cares about deriving the first-
order approximate, we call then first-order methods; the sec-
ond class caters to the second-order approximate and thus
we call then second-order approximate. Then we closed this
section by discussion of constrained non-convex optimiza-
tion methods.

I.1 Gradient Descent
In the first chapter, we consider some basic methods which
does not guarantee a local minima convergence (or at least
not proved to do so). And we begin by the most well known
method of gradient descent. Consider in the nth iteration
step, we have collected the first-order information from the
oracle. And via first-order approximation, we get

f̄k(x) = f(xk) + f ′(xk)(x− xk).

Now given this approximation, we hope to find a direc-
tion for local update. And its’ clear that −f̄ ′k(x) = −f ′(xk)
gives the antiderivative of the approximation function at xk.
We will use this antiderivative to construct our updating rule.

xn+1 = xk − hkf ′(xk)

This updating rule is elegant, and the descent lemma
claims that for hk = 1

L ,∀k, we have

f(xk+1) ≤ f(xk)− 1

2L
‖ f ′(xk) ‖2 .

Then by telescoping, we have

N∑
k=0

‖ f ′(xk) ‖2 ≤2L(f(x0)− f(xn))

≤2L(f(x0)− f(x∗))

(3)

And it’s clear that the minimum gradient in history,
mink ‖ f ′(xk) ‖ is bounded as

min
k
‖ f ′(xk) ‖≤

√
2L(f(x0)− f(x∗))

N + 1
.

The local rate of convergence for gradient descent is
somewhat better [LecConv P30].

‖ x0 − x∗ ‖≤
r̄r0

r̄ − r0

(
1− 2l

L+ 3l

)k
This convergence rate is called linear. But in general, we’d

say that gradient descent offers sublinear convergence rate.

I.2 Newton’s Method
Since approximating the function by first order method is
very promising already. And we consider the second order
approximation as follows.

f̄k(x) = f(xk) + 〈f ′(xk)|y − xk〉

+
1

2
〈f ′′(xk)(y − xk)|(y − xk)〉

(4)

Thus by letting the first order derivative of the function
above as 0, we get

xk+1 = xk − [f ′′(xk)]−1f ′(xk).

This leads to another updating rule - Newton Method. But
it has some drawbacks. It breaks down when f ′′(xk) is de-
generate. And this Newton process could diverge. And to
tackle the divergence problem, practitioners usually adopt a
damped Newton method.

xk+1 = xk − hk[f ′′(xk)]−1f ′(xk).

However, no global convergence results about Newton
method is whatsoever made. And the degenerated Hessian
can also make the algorithm fragile. Anyway, what makes
Newton method stands out as a good method is the fast local
convergence, which is quadratic[LecConv P35].

‖ xk+1 − x∗ ‖≤
M ‖ xk − x∗ ‖2

2(l −M ‖ xk − x∗ ‖)
A very tricky way used in practice is to use gradient

descent at the beginning, and then switch to the Newton
method as the algorithm progresses.

I.3 Quasi-Newton Method [global convergence and
rate?]
The gradient descent and Newton method has made the
first few steps towards better gradient methods. And quasi-
Newton method, which is based on more delicate approx-
imation of the function, is created. In quasi-Newton (also
known as variable metric), we use the following approxima-
tion.

f̄k(x) = f(xk) + 〈f ′(xk)|y − xk〉

+
1

2
〈Gk(y − xk)|(y − xk)〉

(5)

First order constraint gives us

xk+1 = xk −G−1
k f ′(xk).

Thus the idea behind the quasi-Newton is that we con-
struct Gk progressively thus Gk → f ′′(x∗). Or a more ro-
bust way is to constructHk gradually thusHk → f ′′(xk)−1.
But how can we generate such a sequence? A necessary con-
dition is that

Hk+1(f ′(xk+1)− f ′(xk)) = xk+1 − xk.

It’s not hard to get this constraint on Hk by noticing
the property of the quadratic interpolation between xk and
xk+1. This quasi-Newton method enjoys a superlinear local
convergence rate, i.e., we have

‖ xk+1 − x∗ ‖≤ const· ‖ xk − x∗ ‖ · ‖ xk−n − x∗ ‖ .

Anyway, the global convergence rate should be no better
than the gradient descent.

I.4 Conjugate Gradient Method [idea, global
convergence?]
Based on the quadratic approximation, we can derive
more effective gradient method. For example, the conju-
gate method is specially designed for quadratic function.
The idea behind the conjugate method is that, when the do-
main is sphere-shaped, the gradient can always attain the
optima in just a few steps. However, when the domain is
ecliptic-shaped, the gradient descent always reaches the op-
tima while shaking from side to side. Thus, we want to force
the optimizer to never go backward, and always try new di-
mensions.

We defer the proofs of the intention of conjugate gradi-
ent method to the appendix, and give the convergence result
here. This method enjoys a n-step quadratic convergence,
i.e., ‖ xn+1 − x∗ ‖≤ const· ‖ x0 − x∗ ‖. But it’s global
convergence is no better than the gradient method. It’s pop-
ular among practitioners in that it has cheap iterations.

However, it’s impossible for the conjugate gradient
method to produce more than n orthogonal gradients in one
iteration. Thus it has to restart every n steps.

II.1 Cubic Regularization Method
Under the assumption that f(x) ∈ C1,1

L , we cannot hope
to get any guarantee about the convergence, i.e., wether it
converges to a saddle point, or a local minima. Increasing
the order of continuity, we seek for better guarantees of this
problem. Thus in the cubic regularization method, we aims
to find an approximate local minima and thus we make a
stronger assertion about the function class, i.e., we assume
that f(x)C2,2

L .
We restate the assumption we made and the target we seek

for in finding an approximate local minima.
Assumption 1. The Hessian of function f(x) Lipschitz on

domf , i.e.,

‖ f ′′(x)− f ′′(y) ‖≤M ‖ x− y ‖ .
And our target is to find some x̄ such that

• first-order stationary: ‖ f ′(x̄) ‖≤ ε,
• second-order guarantee: −λn(f ′′(x̄)) ≤ δ.

Now we formally discuss the idea of cubic regularization.
In fact, the cubic regularization extends the gradient map-
ping’s idea to higher orders. Specifically speaking, we have
the gradient mapping in this occasion as.

xQ(x̄; γ) = arg min
x∈Q

[〈f ′(x̄)|x− x̄〉

+
1

2
〈f ′′(x̄)(x− x̄)|x− x̄〉+

γ

6
‖ x− x̄ ‖3].

(6)
We can use the second-order descent lemma to bound the

guaranteed decrease when γ ≥ L as follows.

f(x̄)− f(xQ(x̄; γ)) ≥ γ

12
‖ x̄− xQ(x̄; γ) ‖3

Note that the convergence rate of this method is O(ε−
3
2)

on first-order condition, andO(δ−3) on second-order condi-
tion.

II.2 Trust Region Method [convergence rate?]
We won’t deeply touch this group of works, which is enor-
mous rather than large. However, we still discuss some of its
ideas and properties. We rethink about Newton method, for
which there has been a lot of modification proposed. How-
ever, the trust region is based on the idea of measuring the
deviation of local approximation, and enlarge or decrease
the trusted region for the validity of this local approxima-
tion. In formal language, we want to solve in iteration k that

min
‖s‖≤∆k

{wk(xk) = f(xk) + 〈f ′(xk)|s〉+ 〈f ′′(xk)s|s〉}.

This subproblem is simple to solve, and we measure the
gap between the expected decrease δe = wk(xk)−wk(xk+
s) and the real decrease δr = f(xk)−f(xk+s). If this ratio
is too low, i.e., η = δr

δe
≤ η, we suppose that the model is not

acceptable, and instead of changing the model, we decrease
the diameter of the trusted region ∆k by γ. Otherwise, we

will accept the model and perform a update step. However,
if this ratio is too high, we increase the diameter for making
larger steps.

The convergence of trusted region method can be estab-
lished, both for first-order condition, and for second-order
condition. However, although the complexity of this method
is claimed to be superlinear, the assumption is somewhat
special and we won’t make any assertion about the com-
plexity of it. Maybe we’ll investigate into this problem later.
Anyway, it has been a quite popular nonlinear programming
method for decades.

III.1 Penalty Function Method
In the third chapter, we consider constrained minimization,
which is min f0(x), s.t.fi(x) ≤ 0,∀i = 1, ...,m. Before
considering about solutions, we first make it clear that con-
strained minimization is not generally easier than uncon-
strained ones. And up to now, I know no method that guar-
antees the convergence rate even to an approximate optima.

To solve this problem, a basic idea used widely in design
of algorithms is that, solving a sequence of unconstrained
minimization leading to the exact solution of the constrained
minimization, i.e., sequential unconstrained minimization.
And we first define the penalty function.

Definition 2. A continuous function Φ(x) is called a
penalty function for a closed set Q if

• Φ(x) = 0 for any x ∈ Q,

• Φ(x) > 0 for any x /∈ Q.

And some commonly used penalty functions include

• Quadratic penalty: Φ(x) =
∑m
i=1(fi(x))2

+,

• Nonsmooth penalty: Φ(x) =
∑m
i=1(fi(x))+.

The basic idea of penalty method is clear and simple. We
solve a series of penalized unconstrained optimization. And
in iteration k, we solve

min f0(x) + tkΦ(x).

And it’s clear that when tk → +∞, we have the penalized
minima approximates an optima. And frustratingly, there is
no rule for selecting the coefficients or the penalty function,
there is no bound on accuracy, there is no rate of conver-
gence established.

III.2 Barrier Function Method
Similarly, we consider another way of constructing such se-
quence of unconstrained optimization. We first define the
barrier function as follows.

Definition 3. For a closed setQwith intQ 6= ∅, the barrier
function F (x) is a continuous function so that F (x)→ +∞
when x→bdryQ.

Some frequently used barrier functions include

• Power-function barrier: F (x) =
∑m
i=1

1
(−fi(x))p ,∀p ≥ 1.

• Logarithmic barrier: F (x) = −
∑m
i=1 ln(−fi(x)).

• Exponential barrier: F (x) =
∑m
i=1 exp

(
1

−fi(x)

)
.

We introduce the notion of Slater condition here, which
guarantees the existence of a barrier function for the non-
convex optimization.

Definition 4. (Slater condition) For the nonlinear opti-
mization whose feasible set is Q, the Slater condition is sat-
isfied iff. intQ 6= ∅.

The barrier function method progressively solves

min f0(x) +
1

tk
F (x).

And it can be proved that when tk → +∞, the barrier
optimization converges to the optima. However, the conver-
gence rate still cannot be established.

Convex Optimization
Intrinsically, finding a local minima in the non-convex op-
timization problems can be quite hard. And in most cases,
what we can do is only to find a first-order approximate
which is ε-close to satisfying the first order condition only.
A very straight forward idea of the optimization society is
to prove the power of first-order methods by constraining on
the function class.

Preliminary
We want function class where first-order condition already
leads to minimizers. And to generate our function class, we
define the base and the rules. Notice that the linear function
is simple and quite satisfactory for the first-order condition
and we’d choose it as our base. For the generating rules, we
use the basic closedness over linear operations. To sum up,
we have the constraints as follows.

• (base) the continuous function class F contains f(x) =
α+ 〈a, x〉,

• (induction) if f1, f2 ∈ F and α, β ≥ 0, then αf1 +βf2 ∈
F ,

• (design goal) f ′(x) = 0⇒ f(x) = min f(·).

The following convex function class is exactly fitting for
the conditions above (proof at LecConv P52).

Definition 5. (convex function class) The function class
F1 includes all functions f(·) thus ∀x, y ∈ Rn, we have

f(y)− f(x) ≥ 〈f ′(x)|y − x〉.
It can be verified thatF1 is closed under affine operations,

thus f(Ax + b) ∈ F1 for f(x) ∈ F1. And we have the
following conditions equivalent to the definition of convex
functions (proof at LecConv P54).

• ∀x, y ∈ Rn, ∀α ∈ [0, 1], f(xα) ≤ αf(x) + (1− α)f(y),

• ∀x, y ∈ Rn, 〈f ′(x)− f ′(y)|x− y〉 ≥ 0,

• (only for f ∈ C2) ∀x ∈ Rn, f ′′(x) � 0.

To this end, we incorporate Lipschitz continuity to guar-
antee more tractability. Thus,F1,1

L denotes the functions that
satisfies one of the followings for any x, y ∈ Rn (proof at
LecConv P57).

• (descent) 0 ≤ f(y)−f(x)−〈f ′(x)|y−x〉 ≤ L
2 ‖ x−y ‖

2,

• f(x) + 〈f ′(x)|y − x〉+ 1
2L ‖ f

′(x)− f ′(y) ‖2≤ f(y),

• (nonexpansive) 1
L ‖ f

′(x)−f ′(y) ‖2≤ 〈f ′(x)−f ′(y)|x−
y〉,

• 〈f ′(x)− f ′(y)|x− y〉 ≤ L ‖ x− y ‖2

We’d prove the first inequality. Consider the function
φ(y) = f(y) − 〈f ′(x0)|y〉. Notice that φ ∈ F1,1

L , and it’s
optimal point is y∗ = x0. Therefore, we have

φ(y∗) ≤ φ(y − 1

L
φ′(y)) ≤ φ(y)− 1

2L
‖ φ′(y) ‖2 .

This establishes the first inequality. And a question that
arise naturally is that what’s the complexity of optimization
over this function class? Under the following assumption,
we can show that it’s also cursed by the dimension.

Assumption 1. An iterative method M generates a se-
quence of test points {xk} such that

xk ∈ x0 + span{f ′(x0), ..., f ′(xk−1)},∀k ≤ 1.

The following theorem shows the limitation of the itera-
tion methods under Assum.1 on convex optimization.

Theorem 2. (convex with iterative method) Under As-
sum1. to minimize a function f ∈ F1,1

L with only first-order
oracle, we have the following universal limitation on con-
vergence. For k ≤ 1

2 (n− 1),

f(xk)− f∗ ≥ 3L ‖ x0 − x∗ ‖2

32(k + 1)2
.

Thus it would be impossible for the target value to con-
verge faster than sublinear rate if no more than 1

2 (n − 1)
iterations has been made, even thought the gradient dimin-
ishes linearly. However, when the dimension of the problem
is quite large, it would be impossible to even go through
O(n) iterations, thus we may need a stronger assumption.

Previously, in deriving local convergence rates under gra-
dient descent and Newton method, a critical assumption
made is about the non-degeneracy of the local minima. And
now we want to make these methods work efficiently glob-
ally, it’s straight forward to globalize these non-degeneracy
assumption. Thus for any x̄, if f ′(x̄) = 0, then we have that
there exists some µ > 0, thus ∀x ∈ Rn,

f(x) ≥ f(x̄) +
1

2
µ ‖ x− x̄ ‖2 .

In fact, we need to add this condition to the convex func-
tion class F1, and we denote it as S1

µ, the strongly convex
function class. We then have the following equivalent defi-
nition of the strongly convex functions.

Definition 6. (strongly convex function) A continuous dif-
ferentiable function f(x) is called strongly convex if ∃µ >
0, ∀x, y ∈ Rn, we have

f(y) ≤ f(x) + 〈f ′(x)|y − x〉+
1

2
µ ‖ y − x ‖2 .

Here µ is called the convexity parameter of function f .
We can further verify the following equivalent statements of
the strongly convex functions.

〈f ′(x)− f ′(y)|x− y〉 ≥‖ x− y ‖2

And we have the following results due to strong convexity.

• f(y) ≤ f(x) + 〈f ′(x)|y − x〉+ 1
2µ ‖ y − x ‖

2,

• 〈f ′(x)− f ′(y)|x− y〉 ≤ 1
µ ‖ f

′(x)− f ′(y) ‖2.

These properties can be verified in the same way as in
the convexity’s case. Furthermore, we consider the function
that is both strongly convex and Lipschitz continuous, i.e.,
f(x) ∈ S1,1

µ,L. We have the following inequality for this func-
tion class (proof at LecConv P66).

〈f ′(x)− f ′(y)|x− y〉 ≥ µL

µ+ L
‖ x− y ‖2

+
1

µ+ L
‖ f ′(x)− f ′(y) ‖2

(7)

And we denoteQf = L
µ ≥ 1 as the condition number. We

then introduce the following approximate result.
Theorem 3. (strongly convex lower bound) Given first or-

der oracle, to find a ε-approximate optima for a function
f ∈ F1,1

µ,L has the following convergence lower bound (proof
at LecConv P67).

f(xk)− f∗ ≥ µ

2

(√
Qf − 1√
Qf + 1

)2k

‖ x0 − x∗ ‖2

In the following chapters, we will discuss unconstrained
convex optimization (chap I) and constrained convex opti-
mization (chap II).

I.1 Gradient Descent
We first consider the gradient descent method’s performance
over convex and strongly convex functions. We have there-
fore

∆k = f(xk)− f∗ ≤ 〈f ′(xk)|xk − x∗〉 ≤ r0 ‖ f ′(xk) ‖ .

And for the gradient descent, we have

f(xk+1) ≤ f(xk) + 〈f ′(xk)|xk−1 − xk〉

+
L

2
‖ xk+1 − xk ‖2

≤ f(xk)− w ‖ f ′(xk) ‖2
(8)

Here w = h(1− L
2 h). Then we have that

∆k+1 ≤ ∆k −
w

r2
0

∆2
k

.
And we have ∆−1

k+1 ≥ ∆−1
k +wr−2

0 . And by telescoping,
we have ∆−1

k+1 ≥ ∆−1
0 + (k + 1)wr−2

0 . And we choose
h = 1

L , and using f(x0) ≤ f∗ + L
2 ‖ x0 − x∗ ‖2, this lead

to the sublinear convergence rate.

f(xk)− f∗ ≤ 2L ‖ x0 − x∗ ‖2

k + 4
And for the strongly convex optimization, we can use the

new set of inequalities to achieve a linear convergence rate
when h = 2

µ+L (proof at LecConv P70).

f(xk)− f∗ ≤ L

2

(
Qf − 1

Qf + 1

)2k

‖ x0 − x∗ ‖2

I.2 Optimal Method [mirror descent? accelerated
gradient descent?]
Considering the lower bound and the gradient descent con-
vergence rate, these results, in fact, are an order of magni-
tude away. The optimal method is born in order to close this
gap. The arguement of the optimal method is that, gradi-
ent descent is too coarse, and only considered about local
gradient informations. Thus the optimal method seeks for a
global view of the convex optimization problem, using the
global properties of this function class for designing a better
algorithm.

The global method comes with the idea that is intrinsi-
cally different from relaxation, i.e., the estimate sequence.
We denote the estimate sequence for a function f(x) as fol-
lows.

Definition 7. (estimate sequence) A pair of sequences
{φk(x)} and {λk} is called an estimate sequence of func-
tion f(x) if λk → 0 and ∀x ∈ Rn,∀k ∈ N , we have

φk(x) ≤ (1− λk)f(x) + λkφ0(x).

The next statement explains why these objects could be
useful.

Lemma 2. If for some sequence {xk}, we have f(xk) ≤
φ∗k, then f(xk)− f∗ ≤ λk(φ0(x∗)− f∗)→ 0.

In fact, we can view the problem of optimizing f(x) as
two main steps - find a sequence of estimate functions φk,
and then find a sequence {xk} that satisfies Lemma 2. To
construct a sequence of estimate function, it’s not hard to
consider the following procedure, which is very similar to
the mirror descent style.

Lemma 3. (construction of estimate sequence) Assume
that {yk} is an arbitrary sequence in Rn, and αk ∈
(0, 1),

∑
k αk = ∞, then we have the following sequence

as an estimate sequence.

• λ0 = 1, λk+1 = (1− αk)λk,
• φk+1(x) = (1− αk)φk(x) + αkf̄k(x).

Here f̄k(x) is the second order approximation of f(x)
given yk.

f̄k(x) = f(y) + 〈f ′(yk)|x− y〉+
µ

2
‖ x− y ‖2

It’s clear that ∀k ∈ N , we have f(x) ≥ f̄k(x). It’s not
hard to verify by induction that this is an estimate sequence.
And more interestingly, we can consider φk(x) as an ap-
proximation function that incorporates the previous lower
bounds on f(x) to derive a better lower bound.

However, the construction of xk is somewhat harder.
However, we are free in the choice of both {yk}, {αk}
and φ0(x). We consider the following case, where we set
φ0(x) = φ∗0 + γ0

2 ‖ x − v0 ‖2, then we have the following
claim for the function φk(x).

Lemma 4. When φ0(x) = φ∗0 + γ0
2 ‖ x − v0 ‖2, the

functions φk(x) generated by the estimate sequence follows
the canonical form.

φk(x) = φ∗k +
γk
2
‖ x− vk ‖2

This lemma is clear from induction (proof at LecConv
P73). In fact, we can derive the update rules as follows.

γk+1 = (1− αk)γk + αkµ

vk+1 =
1

γk+1
[(1− αk)γkvk + αkµyk − αkf ′(yk)]

φ∗k+1 = (1− αk)φk + αkf(yk)− α2
k

2γk+1
‖ f ′(yk) ‖2

+
αk(1− αk)γk

γk+1
(
µ

2
‖ yk − vk ‖2 +〈f ′(yk)|yk − vk〉).

(9)
And accordingly, we can add more constraints on these

control variables to derive the sequence {xk}. And finally
we have one special case of the optimal methods as follows
(procedure in LecConv P77).

• choose y0 = x0 ∈ Rn.

• for kth iteration, compute

xk+1 = yk − hf ′(yk),

yk+1 = xk+1 + η(xk+1 − xk).

And η =
√
L−√µ√
L+
√
µ

, h = 1
L is the parameter. We make

some interpretation of this formula. We can treat the term
η(xk+1−xk) as a retraction, which keeps xk+1 closer to the
previous xk. Thus when the convexity is stronger, the retrac-
tion is less important; while when the convexity is weaker,
the retraction is more significant. And this is what makes it
different from the gradient descent. This method enjoys the
optimal convergence rate.

f(xk)− f∗ ≤ min

{(
1−

√
µ

L

)k
,

4L

(2
√
L+ k

√
µ)2

}
× [f(x0)− f∗ +

µ

2
‖ x0 − x∗ ‖2]

(10)

II.1 Gradient Mapping for Simple Sets
Before discussing constrained minimization, we first con-
sider which kind of constrained minimization can be effi-
ciently solved. It’s not hard to deduce from the definition of
convex functions that, if x, y ∈ domf , then xα ∈ domf .
This naturally gives us a definition of the convex set.

We review the problem of minx∈Q f(x), where Q is a
convex set, and f(x) is a convex or a strongly convex func-
tion. We have the following theorem giving a sufficient and
necessary condition for the optima (proof at LecConv P84).

Theorem 4. Let f(x) ∈ F1 andQ be a closed convex set,
then x∗ is an optima of f(x) over Q iff

〈f ′(x∗)|x− x∗〉 ≥ 0.

And when the function class is restricted to strongly con-
vex functions, the uniqueness gets guaranteed.

Theorem 5. (unique minimizer) Any function f(x) ∈ S1
µ

has an unique minimizer over any closed convex set Q.
However, for bounded convex set, blind gradient could

step over the boundary and make the function value mean-
ingless. We step back to think about what we really did in
gradient descent, i.e., the descent lemma.

f(x) ≤ f(x̄) + 〈f ′(x̄)|x− x̄〉+
L

2
‖ x− x̄ ‖2

This gives us a guaranteed decrease on target function as
∆ = f(x̄) − f(x) ≥ 〈f ′(x̄)|x̄ − x〉 + L

2 ‖ x̄ − x ‖
2, we

want to maximize the guaranteed decrease, and that’s why
we choose x = x̄ − 1

Lf
′(x̄) essentially. Now we turn to

the problem of constrained minimization, where we want to
solve a similar problem, but constrained on Q.

max
x∈Q

{
〈f ′(x̄)|x̄− x〉+

L

2
‖ x̄− x ‖2

}
However, we generalized a little bit to extend the flexibil-

ity in the choice of control parameters.

xQ(x̄; γ) = arg min
x∈Q

f(x̄) + 〈f ′(x)|x− x̄〉+
γ

2
‖ x− x̄ ‖2,

gQ(x̄; γ) =γ(x̄− xQ(x̄; γ)).
(11)

We call this gQ(x̄; γ) the gradient mapping of f on Q.
And it’s not hard to see that, when Q ≡ Rn, the gradi-
ent mapping is in fact f ′(x), and xQ(x̄; γ) = x̄ − 1

γ f
′(x̄).

But when Q is a closed convex set, the gradient mapping
could behave more carefully so that the boundary won’t get
crossed. And we can still view this gQ(x̄; γ) as a constrained
gradient on Q, which only differs from f ′(x) when it’s near
the boundary of Q.

Similarly, we can establish the descent analysis bu the fol-
lowing lemma.

Lemma 5. (gradient mapping) Let f(x) ∈ S1,1
µ,L, γ ≥ L

and x̄ ∈ Rn. Then for any x ∈ Q, we have

f(x) ≥f(xQ(x̄; γ)) + 〈gQ(x̄; γ), x− x̄〉

+
1

2γ
‖ gQ(x̄; γ) ‖2 +

µ

2
‖ x− x̄ ‖2 .

(12)

This can be easily proved using Thm4. and definitions of
gradient mapping. We are interested in two special cases
where we let x = x̄ and x = x∗ in the inequality above
and produce

f(xQ(x̄; γ)) ≤ f(x̄)− 1

2γ
‖ gQ(x̄; γ) ‖2,

〈gQ(x̄; γ)|x̄− x∗〉 ≥ 1

2γ
‖ gQ(x̄; γ) ‖2 +

µ

2
‖ x∗ − x̄ ‖2 .

These two inequalities are critical to the convergence of
the gradient mapping method. And it’s not hard to prove that
the analysis complexity results aligned exactly with the un-
constrained case, which is linear rate under strong convexity
and sublinear under general convexity. But we will also note
the assumption on which this conclusion is based.

Assumption 2. (quadratic optimization) Solving the
quadratic minimization problem over convex set is easy.

This can be easily verified in the unconstrained setting,
where both Newton method and conjugate gradient can
solve this problem perfectly. And in the constrained setting,
we still need to verify this assumption carefully. Later we
will see that simple simplex method will satisfy our needs if
the constraints are linear, or interior point method when the
constraints are quadratic. However, no general assertion can
be made to this assumption, in the cases where the gradient
mapping is hard to compute, we still need to resort to other
methods.

II.2 Functional Constrained Optimization
[intuition?]
However, we want to consider more than just convex opti-
mization over simple sets. Generally speaking, we want to
consider the following problem.

min f0(x),

s.t. fi(x) ≤ 0, i = 1...m.
(13)

Since fi(x) ≤ 0, i = 1...m. is equivalent to g(x) ≤ 0,
where g(x) = max{fi(x), i = 1...m}. And we denote t∗ as
the an optimal value of this problem, then

Here the functions are all convex and smooth, i.e., fi(x) ∈
S1,1
µ,L. The key idea for solving this problem lies in trans-

forming this programming into a minimax problem.

f∗(t) = min
x∈R

max{f0(x)− t, fi(x), i = 1...m}

And we have the following lemma (proof at LecConv
P101).

Lemma 6. f∗(t) ≤ 0 for t ≥ t∗; f∗(t) > 0 for t < t∗.
Thus using this lemma, we essentially transformed the

original problem into finding the smallest root of f∗(t), and
the subproblem as a minimax problem.

Solving the minimax problem To solve the general min-
imax problem, minx[f(x) = max{fi(x), i = 1...m}], we
consider a linearization technique, i.e., we let f(x̄;x) =
max1≤i≤m[fi(x̄) + 〈f ′i(x̄)|x − x̄〉]. And we then have the
following lemma.

Lemma 7. Under strongly convexity, we have that a point
x∗is a solution to min f(x) iff min f(x∗;x) = f(x∗;x∗) =
f(x∗).

Thus we can now illustrate the main process of handling
the minimax problem. First, we linearize f(x) at xk to get

f(xk;x), then we calculate the derivative of the function
f(xk;x), and update towards xk+1 using this gradient. How-
ever, there are still a few problems, for example, when the
function f(xk;x) becomes non-smooth, it becomes impos-
sible to calculate the derivative. Thus instead of using the
derivative, we use a gradient mapping as follows.

xf (x̄; γ) = arg min
x

[f(x̄;x) +
γ

2
‖ x− x̄ ‖2]

gf (x̄; γ) = γ(x̄− xf (x̄; γ))

And also note that, this is based on the assumption that
minimizing a max-type linear function adding a quadratic
term is easy.

Calculating the root Then the second problem is to calcu-
late a root, given that the function value f∗(t) can be easily
evaluated. In fact, we can prove that f∗(t) is non-increasing
and is 1-Lipschitz continuous. Moreover, we can also prove
that its derivative also increases (proof at LecConv P101).

Lemma 7. f∗(t) is non-increasing and 1-Lipschitz con-
tinuous. And ∀t0 < t1 < t2, we have

f∗[t0, t1] ≤ f∗[t1, t2]

This helps us to design efficient schemes for calculating
the root. Anyway, the two-level optimization is still quite
complex. We’d resort the overall analysis later (find it at Lec-
Conv P103).

Non-smooth Convex Optimization
In fact, the function can be quite non-smooth, for example,
the max-type convex function can be non-smooth at the in-
tersections of sub functions. In other optimization problems,
we can also encounter target functions that are non-smooth,
but still has convex properties. Thus we wish to extend the
convexity property to the non-smooth cases. However, to
handle non-smooth function, we not only have to extend the
notion of convexity, but also the notion of differentiability,
and the notion of mapping.

Preliminary
We discuss about general convexity, projection and subgra-
dient sequentially. They are important tools for non-smooth
optimization.

PreI. General convexity We give the definition of general
convexity as follows.

Definition 8. (general convexity) A function f(x) is gen-
eral convex if ∀x, y ∈domf , we have xα ∈domf and
f(xα) ≤ αf(x) + (1− α)f(y).

We have some equivalent definitions for general convex-
ity, for example, the epigraph is a convex set. We have the
following very important theorems concerning the continu-
ity and differentiability property of the convex functions.

Theorem 6. (local boundedness) For f be convex and
x ∈int(domf), f is locally upper bounded at x0.

Theorem 7. (local continuity) For f be convex and
x0 ∈domf , f is locally Lipschitz continuous at x0.

Theorem 8. (local differentiability) Convex function f is
differentiable in any direction at any interior point of its do-
main.

These are classical results and theirs proofs can be found
at the [LecConv].

PreII. Projective Mapping Let Q be a closed convex set,
then the projection (or projective mapping) of x0 ∈ Rn on
Q is

πQ(x0) = arg min{‖ x− x0 ‖: x ∈ Q}.

And we have the following classical criterion for the pro-
jection.

Theorem 9. (projection) The projection of x on a closed
convex set Q is unique, and for any x ∈ Q, we have

〈πQ(x0)− x0|x− πQ(x0)〉 ≥ 0.

Projection is a helpful tool when we want to get the point
that exceeds Q due to gradient descent back to Q.

PreIII. Subgradient We then define the subgradient,
which is an extension from its smooth counterpart as deriva-
tives. The subgradient essentially indicates the direction for
function decrease. We first consider the definition of subgra-
dient, and then we show how the subgradient can be com-
puted efficiently.

Definition 9. (subgradient) The subgradient g of function
f at a point x0 ∈domf satisfies that for any x ∈domf ,

f(x) ≥ f(x0) + 〈g|x− x0〉.

Then a natural question is that wether every convex func-
tion has nonempty subgradient at any point of its domain.
The answer is affirmative (proof at P127).

Lemma 9. Closed convex function f has nonempty sub-
gradient at any point x0 ∈domf .

And the following theorem establishes the connection be-
tween the subgradient and the directional derivative.

Theorem 10. Let f be a closed convex function,
∀x0 ∈int(domf) and p ∈ Rn we have

f ′(x0; p) = max{〈g, p〉|g ∈ ∂f(x0)}

This says that the directional derivative is in fact the
largest projection attainable of some subgradient at this di-
rection. Subgradient can be computed easily for most kinds
of functions and their combinations. We give some examples
below.

• (linear combination) let f = α1f1 + α2f2 be convex and
closed, then ∂f = α1∂f1 + α2∂f2,

• (affine transformation) let f(x) = g(Ax + b) be convex
and closed, then ∂f(x) = AT∂g(Ax+ b),

• (max-type function) let function f(x) = max1≤i≤m
fi(x), then ∀x ∈ int (dom f), we have ∂f(x) = Conv
{∂fi(x)|i ∈ I(x)}, where I(x) = {i|fi(x) = f(x)}.

PreIV. Misc. Also, we give the Kuhn-Tucker optimality
condition as follows (proof at LecConv P134).

Theorem 11. (Kuhn-Tucker) Let fi(x) be differentiable
convex functions, and the Slater condition is satisfied, then
x∗ is a solution to functional constrained minimization prob-
lem iff ∃λi ≥ 0, i = 1...m, such that

f ′0(x∗) +
∑
i∈I∗

λif
′
i(x
∗) = 0,

here I∗ = {i ∈ [1,m] : fi(x
∗) = 0}.

Now we are ready to consider the general non-smooth op-
timization schemes.

I.1 Subgradient Method
The idea of subgradient method is very clear - using sub-
gradients rather than gradients in gradient descent. Before
discussing about the details, we first give a complexity lower
bound for the iterative subgradient methods on this problem,
which is O(1

ε2).
And we’d still consider the subgradient’s property as the

following inequality, which means that the target function
decreases in the −g(x) direction.

〈x− x∗|g(x)〉 ≥ 0

And this is essentially why we can use the subgradient
method. Now we are going to proceed to the subgradient
method as follows.

xk+1 = xk − hk
g(xk)

‖ g(xk) ‖
Note that the subgradient is normalized to make the

method more robust and avoid possible oscillation. We de-
note vi = g(xk)

‖g(xk)‖2 as this normalized subgradient direction.
And we can bound r2

k+1 =‖ xk+1 − x∗ ‖2 as follows.

r2
k+1 = ‖ xk+1 − x∗ ‖2

= ‖ xk − x∗ − hkvk ‖2

=r2
k + h2

k − 2hkvk

=r2
0 +

k∑
i=0

h2
i −

k∑
i=0

2hivi

(14)

Anyway, it would be hard for us to move any further as in
gradient descent. We have to stop and consider how we can
bound the 〈ri|vi〉 term. This term is essentially ‖ g(xk) ‖−1

〈xk − x∗|g(xk)〉, and this term is strictly larger than zero.
But we still need better bounds on this term to determine
how much decrease the subgradient method has made.

To do this, we have to introduce a new conception as lo-
calization, since the method used in smooth optimization
like relaxation and approximation would hardly help here.
The basic idea of localization is as follows. We interpret the
information of 〈x− x∗|g(x)〉 ≥ 0 in another way. In fact, it
not only claims the direction−g(x) to be a decreasing direc-
tion, but it also constrained on the x∗, so that it has to be on
the right halfspace. And the intuition is that when we have
enough xi, g(xi) pairs, we can effectively bound the space

that x∗ could reside in, and therefore we can make a good
localization of this x∗.

If the closeness to the optimal solution is bounded, we
can then bound the closeness of target function by the local
Lipschitz property of the convex function. The key ingredi-
ent is that for x̄ that satisfies 〈g(x)|x − x̄〉 ≥ 0, we have
f(x) − f(x̄) ≤ wf (x̄; vf (x̄;x)). Here vf measures the dis-
tance from x̄ to the separation plane. And wf measures the
largest f(x′)− f(x̄) within B(x̄; vf (x̄;x)). The intuition of
this property is that the target function faces no loss in the di-
rection perpendicular to g(x), and thus a perpendicular ball
from x̄ to the plane would bound the target difference effec-
tively.

Combining the above arguements, we conclude that for a
set of (xi, fi, gi), let f∗k = mini fi, v∗k = mini vf (x∗;xi),
then the target difference is well bounded by the closeness
of x∗ and the supporting planes.

f∗k − f∗ ≤ wf (x∗; v∗k) ≤ Lv∗k
Turning back to the subgradient problem, we have that

r2
k+1 ≤ r2

0 +

k∑
i=0

h2
i −

k∑
i=0

2hiv
∗
k.

And this leads to v∗k ≤
R2+

∑k
i=0 h

2
i∑k

i=0 2hi
, and we finally have

f∗k − f∗ ≤ L
R2 +

∑k
i=0 h

2
i∑k

i=0 2hi
.

By choosing hi = r√
i+1

, we can achieve convergence rate
of O(ε−2), which meets the theoretical bound.

II.2 Cutting Plane Schemes
All cutting plane schemes, including method of center-of-
gravity and ellipsoid method require the dimension of x to
be limited. And the theoretical complexity lower bound is
O(n ln 1

ε). In this case, the localization set S0(X) = Q,
Sk+1(X) = {x ∈ Sk(X)|〈g(xk)|xk − x〉 ≥ 0} are measur-
able. And in fact, we have

v∗k ≤ D
(

volnSk(X)

volnQ

) 1
n

.

The proof can be found at [LecConv P150]. And this is
the motivation of acceleration. We can control the halfs-
pace generation process and achieve linear convergence of
{volnSk(X)}, which translates into linear convergence of
{v∗k} directly. Thus we have the following process, known
as center-of-gravity method.

• Set S0 = Q;

• For kth iteration:

• choose xk = cg(Sk);

• set Sk+1 = {x ∈ Sk|〈g(xk)|xk − x〉 ≥ 0}.
The convergence rate is guaranteed by the property of

center-of-gravity.

volnSk+1

volnSk
≤ 1− 1

e

This leads to the linear rate of convergence

f∗k − f∗ ≤MD(1− 1

e
)−

k
n .

However, computing the center of gravity is quite dif-
ficult, and making this method absolutely impractical. We
consider another bounding technique, i.e., we construct a se-
quence of ellipsoids rather than a series of simplex. Consider
the following ellipsoid.

E(H, x̄) = {x ∈ Rn|〈H−1(x− x̄)|x− x̄〉 ≤ 1}

Then with the cutting plane, we have the half ellipsoid as

E+ = {x ∈ E(H, x̄)|〈g|x̄− x〉}.
And moreover, we can construct another ellipsoid con-

taining this one, i.e, we let

x̄+ = x̄− 1

n+ 1
· Hg

〈Hg|g〉 12
;

H+ =
n2

n2 − 1

(
H − 2

n+ 1
· Hgg

TH

〈Hg|g〉

)
.

Then E+ ⊂ E(H+, x̄+), and this produces linear conver-
gence rate.

volnE(H+, x̄+) ≤
(

1− 1

(n+ 1)2

)n
2

volnE(H, x̄)

The analytical complexity of the ellipsoid method is
O(n2 ln 1

ε).

II.3 Kelly Method
The Kelly method tries to build a model for the function,
which is coarse approximation of the function, with historic
information integrated into this estimation.

f̄k(X;x) = max
i

[f(xi) + 〈g(xi)|xi − x〉]

It’s clear that this function is a global lower bound for
f(x). The idea of Kelly method is simple. At kth iteration,
it chooses xk+1 that minimizes this f̄k(X;x). Anyway, it is
quite misleading to do so, in fact. And it is quite unstable. It
can be proved that it does not perform any better than ellip-
soid method.

II.4 Mirror Descent
The idea of mirror descent is somewhat similar to the op-
timal method, which encourages a global view for a better
algorithm. We consider the supporting plane at the iteration
k as

f̄k(x) = f(xk) + 〈∂f(xk)|x− xk〉.

And this serves as a lower bound for the original problem,
i.e., f(x) ≥ f̄k(x),∀x, k. Thus we have the following intu-
ition (just for analysis). We combine the history together to
get a global lower bound, gk(x) = 1

k

∑k
i=0 f̄k(x) ≤ f(x).

And in each step, we select the minimizer of this function
to be the next point. However, to keep the uniqueness of
this minimizer, we choose a regularizer, usually quadratic
function, and add it to the approximation, ḡk(x) = gk(x) +

φ(x) = 1
k

∑k
i=0 f̄k(x) ≤ f(x) + γ

2 ‖ x − xk ‖2. This
regularization can also be considered as a retraction.

To this end, we have discussed the crude idea for the mir-
ror descent. However, full illustration of the mirror descent
will need the notion of distance generating function, Breg-
man divergence, etc., which are very important tools for on-
line convex optimization. Anyway, we still list out the con-
vergence results here. The convergence rate of the mirror de-
scent is 1√

T
, which matches that of the subgradient method.

II.5 Level Methods
The level method (LecConv P155) also achieves the conver-
gence rate as the subgradient method. We do not discuss it
for now.

Open Problems
Here we keep track of some critical open problems in opti-
mization theory.

Non-convex Optimization
• What is the lower bound of analytical complexity of non-

linear / first-order optimization?
• How should we choose the best method for constrained

nonlinear optimization?

Non-smooth Optimization
• Can we use momentum in non-smooth optimization?
• Can we implement optimal methods O(n ln 1

ε) ?

